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Abstract Adverse early life events, such as periodic

maternal separation, may alter the normal pattern of brain

development and subsequently the vulnerability to a vari-

ety of mental disorders in adulthood. Patients with a history

of early adversities show higher frequency of post-trau-

matic stress disorder (PTSD). This study was undertaken to

verify if repeated long-term separation of pups from dams

would affect memory and oxidative stress parameters after

exposure to an animal model of PTSD. Nests of Wistar rats

were divided into intact and subjected to maternal sepa-

ration (incubator at 32�C, 3 h/day) during post-natal days

1–10. When adults, the animals were subdivided into

exposed or not to a PTSD model consisting of exposure to

inescapable footshock, followed by situational reminders.

One month after exposure to the shock, the animals were

exposed to a memory task (Morris water maze) and another

month later animals were sacrificed and DNA breaks and

antioxidant enzymes activities were measured in the hip-

pocampus. Rats exposed to shock or maternal separation

plus shock showed long-lasting effects on spatial memory,

spending more time in the opposite quadrant of the water

maze. This effect was higher in animals subjected to both

maternal separation and shock. Both shock and maternal

separation induced a higher score of DNA breaks in the

hippocampus. No differences were observed on antioxidant

enzymes activities. In conclusion, periodic maternal sepa-

ration may increase the susceptibility to the effects of a

stressor applied in adulthood on performance in the water

maze. Increased DNA breaks in hippocampus was induced

by both, maternal separation and exposure to shock.

Keywords Maternal separation � Post-traumatic stress

disorder � Comet assay � Memory � Oxidative stress

Introduction

Early life stressors have a permanent effect on the organ-

ism. This organizational effect of environment on physio-

logical systems is known as perinatal ‘‘programming’’ [1].

In the rat, the first two weeks of life are a critical period for

the maturation of the hypothalamic–pituitary–adrenocorti-

cal (HPA) axis, which is one of the major neuroendocrine

systems activated in response to environmental challenges,

and early environmental manipulations have long-lasting

effects on behavioral parameters related to coping with

stress [2, 3]. One of these manipulations is long-term

separation of the pups from the dam, which is considered

one of the most potent naturally occurring stressors to

which rat pups can be exposed during the neonatal period

[4]. In this procedure, neonatal rats are removed from the

mother for several hours daily during the first 2 weeks of
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life [3, 5, 6]. When tested as adults, maternally separated

(MS) offspring exhibited behavioral and neuroendocrine

signs similar to those observed in patients with depression

and anxiety disorders [7, 8].

Early stressful situations may increase the vulnerability

to cognitive deficits and psychiatric disorders in adult life

[9], including post-traumatic stress disorder (PTSD). PTSD

is a serious and debilitating anxiety disorder in which a

person exposed to a traumatic event (or events) develops

symptoms in three domains: avoiding stimuli associated

with the trauma, experiencing symptoms of increased

autonomic arousal and reexperiencing the trauma, with the

pathological replay of the emotional memory formed in

response to painful, life-threatening, or horrifying events

[10]. In order to understand the neurobiology of PTSD,

animal models of this disorder have been used, in which

different aspects of this condition may be studied. The

exposure to uncontrollable stressors, such as inescapable

footshock, produces many behavioral changes, and this

paradigm has been proposed as model of depression and of

anxiety-related disorders such as PTSD [11]. Some authors

use a re-exposure to a traumatic stressor [12, 13] or repe-

ated exposures to situational reminders [14, 15], which are

believed to induce re-experiencing of the aversive event.

Imaging studies in PTSD patients have demonstrated

volume reductions in the hippocampus that seems to be

correlated with illness severity and the degree of cognitive

deficit [16, 17]. The hippocampus is involved in the

response to stress and in memory performance [18].

Altered activities of the antioxidant enzymes and levels of

free radical scavengers, as well as other parameters of

oxidative stress in hippocampus have been found to be

related to stress exposure [19, 20], suggesting that the

stress response leads to increased production of free radi-

cals in hippocampus [21, 22].

The aim of the present study is to verify if maternal

separation in rats alters the susceptibility to the effects of

an intense stressor applied in adult age, verifying its long-

lasting effects on cognitive aspects (spatial memory,

evaluated by the performance in Morris water maze task)

and also verifying oxidative stress parameters as antioxi-

dant enzymes activities and DNA breaks in the

hippocampus.

Materials and Methods

Subjects

Pregnant Wistar rats bred at our own animal facility were

randomly selected. They were housed alone in home cages

made of Plexiglas (65 9 25 9 15 cm) with the floor cov-

ered with sawdust and were maintained in a controlled

environment: lights on between 07:00 and 19:00 hours,

temperature of 22 ± 2�C, cage cleaning twice a week, food

and water provided ad libitum. All litters were culled

within 24 h from birth to eight pups and were maintained

intact unless for maternal separation procedures, which

were carried out between 10:00 and 14:00 hours.

Weaning was on postnatal day 21. In this study only

males rats were used respecting a maximum of two pups

per litter per experiment. The animals were housed four to

five per cage. Rats had free access to food (standard lab rat

chow) and water, except during the period when the

behavioral task was applied. Tasks were performed

between 13:00 and 16:00 hours, after animals had reached

adult life.

All animal treatments were approved by the Ethical

Committee of our University and followed the recom-

mendations of the International Council for Laboratory

Animal Science (ICLAS).

Maternal Separation

Non-separated group—Pups were left undisturbed with the

dam until weaning. It was stated on the cage that these

animals should not be touched, not even for cage cleaning.

Dirty sawdust was carefully removed from one side of the

cage, without disturbing the mother and the nest, and

replaced by clean sawdust at that side by the principal

researcher.

Maternal separation group—Pups were removed from

their home cage and were placed into a clean cage lined

with clean paper towel, inside an incubator at 32�C next to

the dam’s cage. After 3 h, pups were returned to their

dams. This procedure was carried out during the first ten

days of life, after which pups were left undisturbed until

weaning.

Exposure to a Stressor During Adulthood

After reaching 60 days of age, the animals were exposed to

a PTSD model (adapted from [11]), which consisted of a

single exposure to footshock, followed by three weekly

exposures to a situational reminder (SR). The animals

(maternal separated and non-separated) were subdivided

into two other groups: no shock and shock.

The apparatus consisted of a 50 9 25 9 25 cm box,

which was divided in two equal compartments, both

compartments with a frontal glass wall. The first com-

partment presented a smooth floor, and the second com-

partment presented a grid floor consisting of 1 mm bronze

bars spaced 10 mm apart. The animals were gently held by

their body and lowered in the first compartment, with their

nose pointing to the rear left corner. After 2 min, a guil-

lotine door was opened until the animal crossed to the
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second compartment. The door was then closed and a

1 mA 60 Hz footshock was delivered during 20 s. The no

shock group was subjected to the same treatment, but no

shock was delivered.

For the exposure to situational reminders (SR), 1 week

after exposure to the apparatus described above, the ani-

mals were placed in the box for 2 min, but just in the first

compartment. This procedure was repeated during

3 weeks, with a seven-days interval between each SR.

Morris Water Maze

About 10 days after the last SR, rats were submitted to the

Morris water maze, to evaluate spatial memory. The maze

consisted of a black circular pool with 180 cm in diameter

filled with water (temperature 22�C, depth 40 cm) situated

in a room with visual cues on the walls. A transparent

platform with 10 cm in diameter was submerged in the

water (2 cm below the water surface). The pool was con-

ceptually divided in four quadrants and had four points

designed as starting positions (N, S, W or E). Rats received

five training sessions (one per day) and a probe trial in the

6th day. Each session consisted of four trials with a 10 min

intertrial interval. A trial began when the rat was placed in

the water at one of the four starting positions, chosen at

random, facing the wall. The order of starting position

varied and any given sequence was not repeated on

acquisition phase days. The rat was given 60 s to locate the

platform; if the animal did not succeed, it was gently

guided to it and left on it for 20 s.

Rats were dried and returned to their home cages after

each trial. The probe trial consisted of a single trial, with

the platform removed. The time spent in the target quadrant

(where the platform used to be), as well as in the opposite

quadrant, were measured [23].

Biochemical Measurements

Preparation of the Samples

One month after the behavioral task, animals were sacri-

ficed between 10:00 and 14:00 hours and the hippocampus

was dissected and used to assess DNA breaks through the

comet assay, or frozen at -70�C, until evaluation of anti-

oxidant enzymes activities. All animals were sacrificed

within this interval of time in a random order considering

groups.

Single Cell Gel Electrophoresis: Comet Assay

A standard protocol for comet assay preparation and

analysis was adopted [24], as described in [25]. Cells were

scored from 0 (undamaged) to 4 (maximal damage),

according to the tail intensity (size and shape), resulting in

a DNA breaks score [26].

Antioxidant Enzymes Activities

For evaluating antioxidant enzymes activities, the hippo-

campus was stored at -70�C until analysis, when it was

homogenized in 10 vol (w:v) ice-cold 50 mM potassium

phosphate buffer (pH 7.4), containing 1 mM EDTA for

determination of Superoxide Dismutase (SOD) and Glu-

tathione Peroxidase (GPx) activities. To determinate cata-

lase (CAT) activity, samples were homogenized in 10vol

(w:v) ice-cold potassium phosphate buffer 10 mM (pH

7.0). The homogenate was centrifuged at 9609g for

10 min at 4�C and the supernatant was used.

Superoxide Dismutase Activity SOD activity was deter-

mined using a RANSOD kit (Randox Labs., USA) which is

based on the procedure described by [27].

Catalase Activity Catalase is an enzyme able to degrade

hydrogen peroxide (H2O2), and its activity assessment is

based upon establishing the rate of H2O2 degradation

spectrophotometrically at 240 nm at 25�C [28]. CAT

activity was calculated in terms of micromoles of H2O2

consumed per minute per milligram of protein, using a

molar extinction coefficient of 43.6 M-1 cm-1.

Glutathione Peroxidase Activity GPx activity was

determined according to [29], with modifications. The

reaction was carried out at 37�C in 200 lL of solution

containing 20 mM potassium phosphate buffer (pH 7.7),

1.1 mM EDTA, 0.44 mM sodium azide, 0.5 mM

NADPH, 2 mM glutathione and 0.4 U glutathione

reductase. The activity of GPx was measured taking tert-

butylhydroperoxide as the substrate at 340 nm. The con-

tribution of spontaneous NADPH oxidation was always

subtracted from the overall reaction ratio. GPx activity

was expressed as nmol NADPH oxidized per minute per

mg protein.

Protein Assay

The total protein concentrations were determined using the

method described by [30] using bovine serum albumin as

the standard.

Statistical Analysis

Data were expressed as mean ? SE of the mean, and were

analyzed by a two way ANOVA, using maternal separation

and exposure to shock as factors. The significance level

was accepted as different when the P value was equal or
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less than 0.05. Sample size varies in each experiment and is

showed individually in the Results section.

Results

One month after exposure to footshock, rats were submit-

ted to a spatial memory task, using the Morris water maze.

The mean time to find the platform in the training days is

showed in Fig. 1. Two-way ANOVA showed differences in

the time spent in the target and opposite quadrants (Fig. 2).

Animals that were subjected to shock spent less time in the

target quadrant [F (1, 28) = 8.702; P \ 0.01]. Significant

effects of shock [F (1, 28) = 33.01; P \ 0.001] and a

significant interaction shock 9 maternal separation [F (1,

28) = 5.407; P \ 0.05] were observed in the time spent in

the opposite quadrant, since animals exposed to shock

showed an increase in this parameter and this effect was

further increased by maternal separation.

A higher score of DNA breaks was observed in the

hippocampus of animals subjected to shock or to maternal

separation. A two-way ANOVA showed significant effects

of shock [F (1, 23) = 5.503; P \ 0.05] and maternal sep-

aration [F (1, 23) = 35.473; P \ 0.001], as displayed in

Fig. 3. On the other hand, no differences were found

among the groups on the antioxidant enzymes activities

(SOD, CAT, GPx) (two-way ANOVA; P [ 0.05; Table 1).

Discussion

Environmental conditions during the neonatal period may

affect adult behavioral and neuroendocrine responsiveness,
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and may influence the pathogenesis of psychiatric disor-

ders. In this sense, risk factors for Post-Traumatic Stress

Disorder (PTSD) may include past experiences as well as

individual neurobiology, and early adverse experiences are

considered a major risk factor for the development of

anxiety disorders. Therefore, this study investigated the

effects of maternal separation (MS), in male rats, on the

outcome of exposing them, as adults, to a stressful expe-

rience. Behavioral observations were made at least

1 month after the stressful experience, in an attempt to

model long-term effects of the exposure to a severe stres-

sor, as observed in humans with PTSD. We observed that

both treatments, maternal separation during the first

10 days of life and exposure to a stressful event in adult

life, had important effects on memory and DNA breaks

index in the hippocampus, while no differences were found

in antioxidant enzymes activities.

Neonatal maternal separation of rat pups leads to an

altered stress responsive phenotype [31]. It is known that

the majority of hippocampal granule neurons develops and

extends their axons between days 1 and 21 of life [32–34].

This peak period of neurogenesis overlaps the stress hyp-

oresponsive period (days 4–14), and exposure to elevated

levels of corticosterone during the neonatal period may

affect hippocampal development [31]. Glucocorticoids

may be capable of affecting hippocampal development by

directly or indirectly influencing the balance between

neurogenesis and apoptosis of granule neurons throughout

life in many species [35, 36].

Studies of structural brain abnormalities in PTSD have

focused in particular on the hippocampus, a structure

critically involved in memory [37–39], indicating that

PTSD is associated with atrophy of the hippocampus [37,

40]. The hippocampus has also a neuroendocrine role in the

hypothalamic–pituitary adrenal axis, in the feedback con-

trol of the stress response [41]. Because of its critical role

in learning and memory as well as in stress regulation,

alterations in the hippocampus have been proposed as

contributing to the etiology of PTSD [37]. Although

glucocorticoids, the adrenal hormones secreted during sit-

uations of stress, can damage the hippocampus [42], the

mechanisms that explain trauma-related hippocampal

atrophy are not clear.

Stress hormones released during emotionally arousing

experiences regulate memory storage especially in the

hippocampus, but also in other brain regions [43–45].

Thus, emotion can significantly modify the accuracy and

retention of new memories. Evidence from another animal

model of PTSD leading to memory impairment in the water

maze (as measured 7-days post-stress) suggests a correla-

tion between memory effects and neurochemical effects in

hippocampus [46]. In the present study, we observed long-

lasting effects of exposure to a shock and to situational

reminders, both on behavior and on hippocampal DNA

breaks index.

In PTSD, the patients may develop memory impair-

ments [47, 48]. In this study, rats exposed to a PTSD model

showed long-lasting effects (observed at least 1 month

after exposure to the shock), suggesting impairments on

spatial memory, since they spent more time in the opposite

quadrant in the water maze task, while spending less time

in the target quadrant. Besides, rats subjected to maternal

separation and to this model of PTSD (shock) spent even

more time in the opposite quadrant, suggesting that

maternal separation worsened the impairment observed

after exposure to shock. In the present study, although MS

worsened the effects of another stressor, it did not have

appreciable effect per se on memory. Chronic neonatal

maternal separation has been shown to produce impair-

ments in learning and memory [31]. However, adult

memory performance is dependent on the nature and

intensity of the early intervention, which may lead to dis-

tinct effects on memory [49], or these differences could

still be attributed to different rat lineages or different MS

schedules.

Deficits in learning and memory have been associated

with damage to the hippocampus, which may be caused by

stress [50–55]. One mechanism suggested as a factor

inducing hippocampal neuroendangerment after stress is an

increased oxidative stress [22]. Increased production of

reactive oxygen species (ROS) could induce an altered

antioxidant enzymes activities profile, since ROS have

been reported to directly increase SOD expression [56, 57].

Increased ROS production could also lead to an increased

DNA breaks index. In the present study, however, no dif-

ferences were observed in antioxidant enzymes activities. It

is possible that the unchanged antioxidant enzymes activ-

ities observed in the present study could be preceded by an

earlier increase, at the time of stress exposure, and sub-

sequent return to control values. Besides, changes in oxi-

dative balance have been reported with unchanged levels of

antioxidant enzymes [58]. Thus, these results do not mean

Table 1 Antioxidant enzymes activities superoxide dismutase

(SOD), glutathione peroxidase (GPx) and catalase (CAT)

Groups SOD GPx CAT

No MS no shock 12.52 ± 2.85 56.78 ± 8.56 1.03 ± 0.55

MS 13.90 ± 4.07 58.81 ± 4.71 1.94 ± 0.77

Shock 15.31 ± 1.65 49.90 ± 6.52 1.70 ± 0.69

MS ? shock 13.01 ± 1.62 66.76 ± 9.43 0.97 ± 0.52

Groups are maternal separated or not and exposed or not to shock as a

PTSD model in the adulthood. Data are expressed as mean ± SEM of

SOD (U/mg protein), GPx (nmol NADPH oxidized/min/mg protein),

and CAT (lmol H2O2 transformed/min/mg protein) activities.

N = 6/group. A two-way ANOVA showed no differences between

the groups (P [ 0.05)
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absence of oxidative stress, since other parameters may

have been altered, such as damage to lipids or proteins. In

addition, increased DNA breaks have been induced in the

hippocampus of SM rats and rats subjected to shock. DNA

breaks measured by comet assay under alkaline conditions

(pH [ 13), (as it was performed here), can detect single

and double-stranded breaks, incomplete repair sites, alkali

labile sites, and also possibly both DNA–protein and

DNA–DNA cross-links in eukaryotic cells [59]. Increased

DNA breaks have been considered a suggestion of

increased risk of lesion in a particular tissue [60, 61], and in

this context it could be related to the effects observed in

spatial memory in the present study. However, single-

strand breaks can arise either directly (e.g. from attack of

deoxyribose by reactive oxygen species) or indirectly via

enzymatic cleavage of the phosphodiester backbone during

DNA base excision repair [62]. In order to understand the

causes of the increased DNA breaks showed here, more

studies are needed.

There are many evidences that exposure to adverse early

life events may increase vulnerability to psychopathology

in adult life. Individuals who experience early trauma, such

as parental loss, sexual abuse or physical assault in child-

hood show higher tendency in adulthood to develop

(PTSD), major depression or generalized anxiety. Mater-

nally separated rats exhibit a dysfunction of the HPA axis

reactivity to stress and, therefore, the MS model in rat is

considered actually as a model of enhanced stress respon-

siveness and depressive-like behaviour [8].

Maternal separation is considered a useful model to study

childhood neglect and abuse. Experiments have shown that

maternal separation may lead to behavioural and neuroen-

docrine abnormalities reminiscent of behavioural disorders

such as depression and anxiety disorders [63, 64]. These

studies therefore clearly showed that stress early in life may

have profound long-lasting effects on the central nervous

system, and these effects may lead to various behavioural

abnormalities and long-term biochemical changes in the

brain [59, 62]. There are important memory disturbances in

MS-related psychiatric disorders, and memory deficits

induced by maternal separation could be related to comor-

bidity between depression and PTSD [65].

Concluding, our findings showed that early adverse life

events may enhance the susceptibility to the effects of a

stressor applied in adulthood regarding spatial memory.

Long-lasting effects of exposure to a shock and to situa-

tional reminders were observed both on behavior and on

hippocampal DNA breaks index. In addition, long lasting

effects of maternal separation procedure were also

observed on DNA breaks.
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